Subfields of division algebras

نویسنده

  • Jason P. Bell
چکیده

Let A be a finitely generated domain of GK dimension less than 3 over a field K and let Q(A) denote the quotient division algebra of A. Using the ideas of Smoktunowicz, we show that if D is a finitely generated division subalgebras of Q(A) of GK dimension at least 2, then Q(A) is finite dimensional as a left D-vector space. We use this to show that if A is a finitely generated domain of GK dimension less than 3 then its subfields have transcendence degree at most 1 and, in particular, over an algebraically closed field any division subalgebra D of Q(A) is either commutative or has the property that Q(A) is finite dimensional as a left and right D-vector space. Finally, we study subfields of quotient division algebras of domains of finite GK dimension and introduce a combinatorial property we call the straightening property. We show that many classes of algebras have this straightening property and we show that if A is a domain of GK dimension d with the straightening property that is not PI, then the maximal subfields of Q(A) have transcendence degree at most d − 1, proving a special case of a conjecture of Small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On normalizers of maximal subfields of division algebras

‎Here‎, ‎we investigate a conjecture posed by Amiri and Ariannejad claiming‎ ‎that if every maximal subfield of a division ring $D$ has trivial normalizer‎, ‎then $D$ is commutative‎. ‎Using Amitsur classification of‎ ‎finite subgroups of division rings‎, ‎it is essentially shown that if‎ ‎$D$ is finite dimensional over its center then it contains a maximal‎ ‎subfield with non-trivial normalize...

متن کامل

On the transcendence degree of subfields of division algebras

Abstract We study subfields of quotient division algebras of domains of finite GK dimension and introduce a combinatorial property we call the straightening property. We show that many classes of algebras have this straightening property and show that if A is a domain of GK dimension d with this property that is not PI, then the maximal subfields of the quotient division algebra of A have trans...

متن کامل

Nondegenerate semiramified valued and graded division algebras

In this paper, we define what we call (non)degenerate valued and graded division algebras [Definition 3.1] and use them to give examples of division p-algebras that are not tensor product of cyclic algebras [Corollary 3.17] and examples of indecomposable division algebras of prime exponent [Theorem 5.2, Corollary 5.3 and Remark 5.5]. We give also, many results concerning subfields of these divi...

متن کامل

Subfields of Nondegenerate Tame Semiramified Division Algebras

We show in this article that in many cases the subfields of a nondegenerate tame semiramified division algebra of prime power degree over a Henselian valued field are inertial field extensions of the center [Th. 2.5, Th. 2.12 and Prop. 2.16 ].

متن کامل

Nicely semiramified division algebras over Henselian fields

We recall that a nicely semiramified division algebra is defined to be a defectless finitedimensional valued central division algebra D over a field E with inertial and totally ramified radical-type (TRRT) maximal subfields [7, Definition, page 149]. Equivalent statements to this definition were given in [7, Theorem 4.4] when the field E is Henselian. These division algebras, as claimed in [7, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007